SMALL 합성곱 신경망1 Chap04. 영어 텍스트 분류_모델링 3 이번 포스팅은 딥러닝 분야의 컨볼루션 신경망에 대해 실습하면서 알아보자. 컨볼루션 신경망은 합성곱 신경망(CNN)이라고도 하며, 전통적인 신경망 앞에 여러 계층의 합성곱 계층을 쌓은 모델이다. 이는 입력 값에 대해 가장 좋은 특징을 만들어 내도록 학습하고, 추출된 특징을 활용해 분류하는 방식이다.일반적으로 이미지에서 많이 활용하였는데, 2014년 Yoon Kim 박사가 쓴 논문을 통해 텍스트에서도 좋은 효과를 낼 수 있다는 것을 입증하였다. 앞에서 본 RNN은 단어의 입력 순서를 중요하게 반영한다면 CNN은 문장의 지역 정보를 보존하면서 문장 성분의 등장 정보를 학습에 반영하는 구조이다. 이 모델을 구현하는 방법은 이전 포스팅인 RNN에서 설명했던 에스티메이터의 구조를 그대로 사용할 수 있으며, 모델쪽 .. 2021. 7. 29. 이전 1 다음 LIST